

Making Huge Games in Unity
with TOOLS!

Brian MacIntosh
Programmer

Me

● UCI Information and CS (2014)
● Video Game Development Club (4 yrs)

Me

● Camera Obscura (VGDC Spring 2011 Game
Jam)

● Passed Steam Greenlight Jan 2014

Me

● Obsidian Entertainment
– Pillars of Eternity (2013-2015)

– Pillars of Eternity II: Deadfire (2015+)

● Programming (Tools, UI, Gameplay, Graphics)

Pillars of Eternity

● A huge gameA huge game
● ~75 different developers over ~75 different developers over

the course of the projectthe course of the project
● 61 GB project61 GB project
● 101000 assets101000 assets
● 450 scenes450 scenes

Pillars of Eternity

● A huge gameA huge game
● ~75 different developers over ~75 different developers over

the course of the projectthe course of the project
● 61 GB project61 GB project
● 101000 assets101000 assets
● 450 scenes450 scenes

Pillars of Eternity II: Deadfire

● An even bigger gameAn even bigger game
● ~100 different developers over the course of the project~100 different developers over the course of the project
● 123 GB project123 GB project
● 222000 assets222000 assets
● 1000 scenes1000 scenes

Unity with a Large Project

Pros
● Fast start

– Lots of functionality
built in

● Popular – lots of
resources available

Cons
● Very slow loads
● Black box
● Pushing the limits

Problems for Huge Games

1. Searching: Is this asset/prefab/script used?
Where?

2. Maintaining Compatibility: Don't break old data.

3. Standalone Divergence: some bugs only
happen in the standalone build.

Tools

● A program or part of a program that automates
or streamlines a development task.

● Help you make your game better, make it
faster, and have a better time.

Tools

● A program or part of a program that automates
or streamlines a development task.

● Help you make your game better, make it
faster, and have a better time.

● As a programmer, they make people like you.

Tools

● A program or part of a program that automates
or streamlines a development task.

● Help you make your game better, make it
faster, and have a better time.

● As a programmer, they make people like you.
● Not the primary goal.

Tools

1. Have an idea

2. Evaluate development time versus savings
● Time savings
● Improved results
● Enjoy work more

3. Make it

4. Use it

Borrowed from Randall Munroe (xkcd.com/1205)

Re-use

● There are already great tools for solving a lot of
common problems.

● There is often still a (time) cost to integrate free
tools.

In-Unity Tools

● Property Drawer
● Custom Inspector
● Editor Window
● Gizmos

Property Drawer

● Change how fields of a particular type are
drawn in the inspector

● Good for removing the need to expand
serialized classes

Property Drawer

● Create a script in a folder called 'Editor'
– A magic folder that excludes the scripts from

standalone builds

● Inherit 'UnityEditor.PropertyDrawer'
● Add a [CustomPropertyDrawer] attribute
● Use methods on UnityEngine.GUI[Layout],

UnityEditor.EditorGUI[Layout]

Custom Inspector

● Change how an entire component is drawn in
the inspector

● Can also append custom controls to the default
inspector

Editor Window

● Create a new editor window that can be docked
or float

Editor Window

● Create a class that
extends
EditorWindow

● Implement OnGUI
● Add a way to show

the window

Gizmos

● Draw controls and other helpful information in
the scene view

1. Searching

● Problem: is this asset/prefab script used?
Where?

● This can come up when:
– You want to delete an unused asset

– You (or a producer) wants to evaluate work to
e.g. add audio to all creatures

– You want to make a change to it and check that
it's safe

– Many other cases

1. Searching

● Unity makes it very
easy to navigate to
the object being
referenced.

● But there's no easy
way to go the other
direction.

1. Searching

● For starters,
we can use
grep.

● Each file in
a Unity
project has
a unique
'guid'

● Edit -> Project Settings -> Editor -> Asset
Serialization -> Mode

1. Searching

● References
have the
'guid' of the
file and a
'fileID'

1. Searching

● 'guid'
identifies
the file

● 'fileID'
identifies
the object
inside the
file

1. Searching

● Integrated into the
editor

● Drag-and-drop the
target

● See the name of the
referencing object

● Downside: still have
to wait for the search

https://github.com/BrianMacIntosh/UnityProjectBrowser

1. Searching (Takeaways)

● Unity is, in part, a tool for editing its own files.
● You can circumvent it and edit them directly if it

helps you.
● Read or edit them.

2. Maintaining Compatibility

● Problem: Making changes to the game without
breaking existing data.

2. Maintaining Compatibility

● ✓ OK: Moving or renaming files.
– Recall that all references are by GUID.

– The meta file also needs to be moved.

– This is done for you if you do it in Unity.

2. Maintaining Compatibility

● ✓ OK: Renaming serialized classes.

0`

2. Maintaining Compatibility

● ⚠ OK: Renaming serialized fields.
– Apply the [FormerlySerializedAs] attribute

2. Maintaining Compatibility

● ⚠ OK: Changing
the type of
serialized fields.

● ISerializationC
allbackReceiver

2. Maintaining Compatibility

● ✘ BAD: Reordering enumerations.
● ✓ OK: Renaming enum elements.

3. Standalone Divergence

● Problem: The standalone build has a problem
that the editor doesn't have.

● You don't have the ability to attach the
debugger, look at objects in the inspector, etc.

3. Standalone Divergence

● Solution: Make
a profile/dev
build.

● Can attach the
debugger
(Debug →
Attach Visual
Studio
Debugger)

3. Standalone Divergence

● On-screen debug output

Reflection: What is it?

● .NET API for examining the structure of your
code at runtime

● Object.GetType()

Reflection: What can it do?

● Command line
● A static class with static methods
● Call any static method from the command line

Reflection: What can it do?

● Scripting

Thanks!

● www.brianmacintosh.com
● brianamacintosh@gmail.com
● @BrianAMacIntosh

